Capítulo 12 Referencias
Asparouhov, T., & Muthen, B. (2006, August). Multilevel modeling of complex survey data. In Proceedings of the joint statistical meeting in Seattle (pp. 2718-2726).
Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in Statistics—Theory and Methods, 35(3), 439-460.
Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society: series B (statistical methodology), 60(1), 23-40.
Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses. Sociological Methodology, 43(1), 178-219.
Finch, W. H., Bolin, J. E., & Kelley, K. (2019). Multilevel modeling using R. Crc Press.
Merlo, J., Chaix, B., Ohlsson, H., Beckman, A., Johnell, K., Hjerpe, P., … & Larsen, K. (2006). A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena. Journal of Epidemiology & Community Health, 60(4), 290-297.
Sarndal, C., Swensson, B. &Wretman, J. (1992), Model Assisted Survey Sampling, Springer, New York.
Rojas, H. A. G. (2016). Estrategias de muestreo: diseño de encuestas y estimación de parámetros. Ediciones de la U.
Santana Sepúlveda, S., & Mateos Farfán, E. (2014). El arte de programar en R: un lenguaje para la estadística.
Lumley, T. (2011). Complex surveys: a guide to analysis using R. John Wiley & Sons.
Bache, S. M., Wickham, H., Henry, L., & Henry, M. L. (2022). Package ‘magrittr’.
Tellez Piñerez, C. F., & Lemus Polanía, D. F. (2015). Estadística Descriptiva y Probabilidad con aplicaciones en R. Fundación Universitaria Los Libertadore.
Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2011). Survey methodology. John Wiley & Sons.
Tille, Y. & Ardilly, P. (2006), Sampling Methods: Exercises and Solutions, Springer.
Gambino, J. G., & do Nascimento Silva, P. L. (2009). Sampling and estimation in household surveys. In Handbook of Statistics (Vol. 29, pp. 407-439). Elsevier.
Cochran, W. G. (1977) Sampling Techniques. John Wiley and Sons.
Gutiérrez, H. A. (2017)
TeachingSampling
. R package.Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1), 1-189.
Lumley, T. (2020). Package ‘survey’. Available at the following link: https://cran. r-project. org.
Hansen, M. H., & Steinberg, J. (1956). Control of errors in surveys. Biometrics, 12(4), 462-474.
Heeringa, S. G., West, B. T., & Berglund, P. A. (2017). Applied survey data analysis. chapman and hall/CRC.
Valliant, R., Dever, J.A., and Kreuter, F., Practical Tools for Designing and Weighting Survey Samples, Springer, New York, 2013.
Valliant, R., Dorfman, A.H., and Royall, R.M., Finite Population Sampling and Inference: A Prediction Approach, John Wiley & Sons, New York, 2000.
Loomis, D., Richardson, D.B., and Elliott, L., Poisson regression analysis of ungrouped data, Occupational and Environmental Medicine, 62, 325–329, 2005.
Kovar, J.G., Rao, J.N.K., and Wu, C.F.J., Bootstrap and other methods to measure errors in survey estimates, Canadian Journal of Statistics, 16(Suppl.), 25–45, 1988.
Binder, D.A. and Kovacevic, M.S., Estimating some measures of income inequality from survey data: An application of the estimating equations approach, Survey Methodology, 21(2), 137–145, 1995.
Kovacevic, M. S., & Binder, D. A. (1997). Variance estimation for measures of income inequality and polarization-the estimating equations approach. Journal of Official Statistics, 13(1), 41.
Bautista, J. (1998), Diseños de muestreo estadístico, Universidad Nacional de Colombia.
Monroy, L. G. D., Rivera, M. A. M., & Dávila, L. R. L. (2018). Análisis estadístico de datos categóricos. Universidad Nacional de Colombia.
Kish, L. and Frankel, M.R., Inference from complex samples, Journal of the Royal Statistical Society, Series B, 36, 1–37, 1974.
Fuller, W.A., Regression analysis for sample survey, Sankyha, Series C, 37, 117–132, 1975.
Shah, B.V., Holt, M.M., and Folsom, R.F., Inference about regression models from sample survey data, Bulletin of the International Statistical Institute, 41(3), 43–57, 1977.
Skinner, C.J., Holt, D., and Smith, T.M.F., Analysis of Complex Surveys, John Wiley & Sons, New York, 1989.
Binder, D.A., On the variances of asymptotically normal estimators from complex surveys, International Statistical Review, 51, 279–292, 1983.
Fuller, W.A., Regression estimation for survey samples (with discussion), Survey Methodology, 28(1), 5–23, 2002.
Pfeffermann, D., Modelling of complex survey data: Why model? Why is it a problem? How can we approach it? Survey Methodology, 37(2), 115–136, 2011.
Wolter, K.M., Introduction to Variance Estimation (2nd ed.), Springer-Verlag, New York, 2007.
Tellez, C. F., & Morales, M. A. (2016). Modelos Estadísticos lineales con aplicaciones en R. Ediciones de la U.
Fay, R.E., On adjusting the Pearson Chi-square statistic for cluster sampling, In Proceedings of the Social Statistics Section, American Statistical Association, Washington, DC, 402–405, 1979.
Fay, R.E., A jack-knifed chi-squared test for complex samples, Journal of the American Statistical Association, 80, 148–157, 1985.
Fellegi, I.P., Approximate tests of independence and goodness of fit based on stratified multistage samples, Journal of the American Statistical Association, 75, 261–268, 1980.
Thomas, D.R. and Rao, J.N.K., Small-sample comparisons of level and power for simple goodness-of-fit statistics under cluster sampling, Journal of the American Statistical Association, 82, 630–636, 1987.
Rao, J.N.K. and Scott, A.J., On chi-squared test for multiway contingency tables with cell proportions estimated from survey data, The Annals of Statistics, 12, 46–60, 1984.
Van Buuren, S., Flexible Imputation of Missing Data, Chapman & Hall, Boca Raton, FL, 2012.
Carpenter, J.R. and Kenward, M.G., Multiple Imputation and Its Application, John Wiley & Sons, Chichester, West Sussex, UK, 2013.
Berglund, P.A. and Heeringa, S.G., Multiple Imputation of Missing Data Using SAS®, SAS Institute Inc., Cary, NC, 2014.
Chambers, R.L., Steel, D.G., Wang, S., and Welsh, A.H., Maximum Likelihood Estimation for Sample Surveys, Chapman & Hall, Boca Raton, FL, 2012.
Zhou, H., Elliott, M.R., and Raghunathan, T.E., Multiple imputation in two-stage cluster samples using the weighted finite population Bayesian Bootstrap, Journal of Survey Statistics and Methodology, 4, 139–170, 2016a.
Zhou, H., Elliott, M.R., and Raghunathan, T.E., Synthetic multiple-imputation procedure for multistage complex samples, Journal of Official Statistics, 32(1), 231–256, 2016b.
Kim, J.K. and Shao, J., Statistical Methods for Handling Incomplete Data, Chapman & Hall, Boca Raton, FL, 2014.
Kim, J.K. and Fuller, W.A., Fractional Hotdeck imputation, Biometrika, 89, 470–477, 2004.
StataCorp., Release 14, P Manual, STATA Survey Data Manual, Stata Press, College Station, TX, 2015.
Raghunathan, T.E., Missing Data Analysis in Practice, Chapman & Hall/CRC Interdisciplinary Statistics, Boca Raton, FL, 2016.
Rubin, D. B. (1987). Multiple imputation for survey nonresponse.
Goldstein, H. (2011). Multilevel statistical models (Vol. 922). John Wiley & Sons.
Data analysis using regression and multilevel/hierarchical models” de Andrew Gelman y Jennifer Hill (2006)
Sophia, R. H., & Skrondal, A. (2012). Multilevel and longitudinal modeling using Stata. STATA press.
Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models.