Capítulo 12 Referencias

  • Asparouhov, T., & Muthen, B. (2006, August). Multilevel modeling of complex survey data. In Proceedings of the joint statistical meeting in Seattle (pp. 2718-2726).

  • Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in Statistics—Theory and Methods, 35(3), 439-460.

  • Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society: series B (statistical methodology), 60(1), 23-40.

  • Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses. Sociological Methodology, 43(1), 178-219.

  • Finch, W. H., Bolin, J. E., & Kelley, K. (2019). Multilevel modeling using R. Crc Press.

  • Merlo, J., Chaix, B., Ohlsson, H., Beckman, A., Johnell, K., Hjerpe, P., … & Larsen, K. (2006). A brief conceptual tutorial of multilevel analysis in social epidemiology: using measures of clustering in multilevel logistic regression to investigate contextual phenomena. Journal of Epidemiology & Community Health, 60(4), 290-297.

  • Sarndal, C., Swensson, B. &Wretman, J. (1992), Model Assisted Survey Sampling, Springer, New York.

  • Rojas, H. A. G. (2016). Estrategias de muestreo: diseño de encuestas y estimación de parámetros. Ediciones de la U.

  • Santana Sepúlveda, S., & Mateos Farfán, E. (2014). El arte de programar en R: un lenguaje para la estadística.

  • Lumley, T. (2011). Complex surveys: a guide to analysis using R. John Wiley & Sons.

  • Bache, S. M., Wickham, H., Henry, L., & Henry, M. L. (2022). Package ‘magrittr’.

  • Tellez Piñerez, C. F., & Lemus Polanía, D. F. (2015). Estadística Descriptiva y Probabilidad con aplicaciones en R. Fundación Universitaria Los Libertadore.

  • Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., & Tourangeau, R. (2011). Survey methodology. John Wiley & Sons.

  • Tille, Y. & Ardilly, P. (2006), Sampling Methods: Exercises and Solutions, Springer.

  • Gambino, J. G., & do Nascimento Silva, P. L. (2009). Sampling and estimation in household surveys. In Handbook of Statistics (Vol. 29, pp. 407-439). Elsevier.

  • Cochran, W. G. (1977) Sampling Techniques. John Wiley and Sons.

  • Gutiérrez, H. A. (2017) TeachingSampling. R package.

  • Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1), 1-189.

  • Lumley, T. (2020). Package ‘survey’. Available at the following link: https://cran. r-project. org.

  • Hansen, M. H., & Steinberg, J. (1956). Control of errors in surveys. Biometrics, 12(4), 462-474.

  • Heeringa, S. G., West, B. T., & Berglund, P. A. (2017). Applied survey data analysis. chapman and hall/CRC.

  • Valliant, R., Dever, J.A., and Kreuter, F., Practical Tools for Designing and Weighting Survey Samples, Springer, New York, 2013.

  • Valliant, R., Dorfman, A.H., and Royall, R.M., Finite Population Sampling and Inference: A Prediction Approach, John Wiley & Sons, New York, 2000.

  • Loomis, D., Richardson, D.B., and Elliott, L., Poisson regression analysis of ungrouped data, Occupational and Environmental Medicine, 62, 325–329, 2005.

  • Kovar, J.G., Rao, J.N.K., and Wu, C.F.J., Bootstrap and other methods to measure errors in survey estimates, Canadian Journal of Statistics, 16(Suppl.), 25–45, 1988.

  • Binder, D.A. and Kovacevic, M.S., Estimating some measures of income inequality from survey data: An application of the estimating equations approach, Survey Methodology, 21(2), 137–145, 1995.

  • Kovacevic, M. S., & Binder, D. A. (1997). Variance estimation for measures of income inequality and polarization-the estimating equations approach. Journal of Official Statistics, 13(1), 41.

  • Bautista, J. (1998), Diseños de muestreo estadístico, Universidad Nacional de Colombia.

  • Monroy, L. G. D., Rivera, M. A. M., & Dávila, L. R. L. (2018). Análisis estadístico de datos categóricos. Universidad Nacional de Colombia.

  • Kish, L. and Frankel, M.R., Inference from complex samples, Journal of the Royal Statistical Society, Series B, 36, 1–37, 1974.

  • Fuller, W.A., Regression analysis for sample survey, Sankyha, Series C, 37, 117–132, 1975.

  • Shah, B.V., Holt, M.M., and Folsom, R.F., Inference about regression models from sample survey data, Bulletin of the International Statistical Institute, 41(3), 43–57, 1977.

  • Skinner, C.J., Holt, D., and Smith, T.M.F., Analysis of Complex Surveys, John Wiley & Sons, New York, 1989.

  • Binder, D.A., On the variances of asymptotically normal estimators from complex surveys, International Statistical Review, 51, 279–292, 1983.

  • Fuller, W.A., Regression estimation for survey samples (with discussion), Survey Methodology, 28(1), 5–23, 2002.

  • Pfeffermann, D., Modelling of complex survey data: Why model? Why is it a problem? How can we approach it? Survey Methodology, 37(2), 115–136, 2011.

  • Wolter, K.M., Introduction to Variance Estimation (2nd ed.), Springer-Verlag, New York, 2007.

  • Tellez, C. F., & Morales, M. A. (2016). Modelos Estadísticos lineales con aplicaciones en R. Ediciones de la U.

  • Fay, R.E., On adjusting the Pearson Chi-square statistic for cluster sampling, In Proceedings of the Social Statistics Section, American Statistical Association, Washington, DC, 402–405, 1979.

  • Fay, R.E., A jack-knifed chi-squared test for complex samples, Journal of the American Statistical Association, 80, 148–157, 1985.

  • Fellegi, I.P., Approximate tests of independence and goodness of fit based on stratified multistage samples, Journal of the American Statistical Association, 75, 261–268, 1980.

  • Thomas, D.R. and Rao, J.N.K., Small-sample comparisons of level and power for simple goodness-of-fit statistics under cluster sampling, Journal of the American Statistical Association, 82, 630–636, 1987.

  • Rao, J.N.K. and Scott, A.J., On chi-squared test for multiway contingency tables with cell proportions estimated from survey data, The Annals of Statistics, 12, 46–60, 1984.

  • Van Buuren, S., Flexible Imputation of Missing Data, Chapman & Hall, Boca Raton, FL, 2012.

  • Carpenter, J.R. and Kenward, M.G., Multiple Imputation and Its Application, John Wiley & Sons, Chichester, West Sussex, UK, 2013.

  • Berglund, P.A. and Heeringa, S.G., Multiple Imputation of Missing Data Using SAS®, SAS Institute Inc., Cary, NC, 2014.

  • Chambers, R.L., Steel, D.G., Wang, S., and Welsh, A.H., Maximum Likelihood Estimation for Sample Surveys, Chapman & Hall, Boca Raton, FL, 2012.

  • Zhou, H., Elliott, M.R., and Raghunathan, T.E., Multiple imputation in two-stage cluster samples using the weighted finite population Bayesian Bootstrap, Journal of Survey Statistics and Methodology, 4, 139–170, 2016a.

  • Zhou, H., Elliott, M.R., and Raghunathan, T.E., Synthetic multiple-imputation procedure for multistage complex samples, Journal of Official Statistics, 32(1), 231–256, 2016b.

  • Kim, J.K. and Shao, J., Statistical Methods for Handling Incomplete Data, Chapman & Hall, Boca Raton, FL, 2014.

  • Kim, J.K. and Fuller, W.A., Fractional Hotdeck imputation, Biometrika, 89, 470–477, 2004.

  • StataCorp., Release 14, P Manual, STATA Survey Data Manual, Stata Press, College Station, TX, 2015.

  • Raghunathan, T.E., Missing Data Analysis in Practice, Chapman & Hall/CRC Interdisciplinary Statistics, Boca Raton, FL, 2016.

  • Rubin, D. B. (1987). Multiple imputation for survey nonresponse.

  • Goldstein, H. (2011). Multilevel statistical models (Vol. 922). John Wiley & Sons.

  • Data analysis using regression and multilevel/hierarchical models” de Andrew Gelman y Jennifer Hill (2006)

  • Sophia, R. H., & Skrondal, A. (2012). Multilevel and longitudinal modeling using Stata. STATA press.

  • Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models.